

1. Name the following compounds (12 points)

(Z)-4,8 dimethyl-4-oxonona-6,8-dienoic acid

(4R,5S)-5-ethyl-4-mercaptohept-bylal

2. Draw the following compounds. (12 points)

(S)-3-ethoxyhexane

(2S,3S)-2,3-dimethyloxetane

3-acetyl-5-bromobenzoic acid

3. What was the starting material, reagents, or product/s for the following chemical transformations? If there is no reaction write "no reaction"

Do not forget about stereochemistry (84 points)

$$CI_2$$
, AICI₃
 $+2$

$$H_2O(xs)$$
, TsOH NO R_X +4

3. Continued

Problem 3 continued.

Problem 3 continued.

- 4. a. Draw the dienophile for the following reaction. 3 points
 - b. Circle the product that is formed from an *Exo* transition state. 3 Points

Nach, HCN

- 5. Design a synthesis of compound Y. (16 points)
 - * The synthesis must start with benzene.
 - * You can use any reaction you have learned this year.
 - * All carbons (except benzene)that end up in the product must start from carbon dioxide and/or alcohols that has three carbons or less.
 - * You need to show the how you make the reagents and intermediate products.
 - * The major product must be carried on to the next step.
 - * You do not need to show the mechanisms.

6. Draw the complete mechanism acid catalyzed removal of the diethyl ketal. (16 points)

7. What is the following structure? C₇H₁₂O₄ (17 points: these 17 point are broken up in the problem)

What are the degrees of unsaturation or IHD? (3 point)

7×2·2=16-12=4/2==2

IR: 3041, 2994, 1729, 1285 cm⁻¹

¹³ C	NMR data (ppm)
	185
	178
	44
	35
	34
	25

List four types of bonds the IR show this molecule has. (4 points)

2. Sp3 C-H 3. C=0 4. Sp2-C-O

Please tell me what you think each peak in the ¹H NMR represents $(CH_X, OH, NH_X ...)$ and how you get its splitting pattern (5 points)

^TH NMR

11.9 (s, 1H) 11.7 (s, 1H) 2.4 (t, 2H)

1.9 (t, 2H)

1.1 (s, 6H)

Draw the structure that best fits all the data. (5 Points)

8. Draw a complete mechanism for the following $S_N 1$ reaction . (6 points)

9. Provide a <u>short</u> explanation (pictures are worth a 1000 words) why there is a drastic difference in the acidity of the methylenes of cyclopentadiene and cycloheptatriene. (6 points)

cyclopentadiene pK_a = 16 vs cycloheptatriene pK_a = 36

HM + 2 = 6

And Andrew

HM: Base

HM: Base

HM: Base

HM: Base

HM: Base

N=2

As compound want to be aromatic, Cylopentadine

"wants" to loose a proton, More acidic

10. Draw a mechanism for the following reaction. (5 points)

17.38.6

IQ1. Starting from pure (1R,6S)-1-ethyl-7-oxabicyclo[4.1.0]heptane X design a synthesis of pure (1S,2S)-1-ethyl-1,2-dimethoxycyclohexane and pure (1R,2R)-1-ethyl-1,2-dimethoxycyclohexane . (4 points)

(1*R*,6*S*)-1-ethyl-7-oxabicyclo[4.1.0]heptane

IQ2. Draw the complete mechanism for the following reaction. (6 points)

